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A B S T R A C T

Objective: To reduce errors in determining eligibility for intravenous thrombolytic therapy (IVT) in stroke pa-
tients through use of an enhanced task-specific electronic medical record (EMR) interface powered by natural
language processing (NLP) techniques.
Materials and methods: The information processing algorithm utilized MetaMap to extract medical concepts from
IVT eligibility criteria and expanded the concepts using the Unified Medical Language System Metathesaurus.
Concepts identified from clinical notes by MetaMap were compared to those from IVT eligibility criteria. The
task-specific EMR interface displays IVT-relevant information by highlighting phrases that contain matched
concepts. Clinical usability was assessed with clinicians staffing the acute stroke team by comparing user per-
formance while using the task-specific and the current EMR interfaces.
Results: The algorithm identified IVT-relevant concepts with micro-averaged precisions, recalls, and F1 measures
of 0.998, 0.812, and 0.895 at the phrase level and of 1, 0.972, and 0.986 at the document level. Users using the
task-specific interface achieved a higher accuracy score than those using the current interface (91% versus 80%,
p=0.016) in assessing the IVT eligibility criteria. The completion time between the interfaces was statistically
similar (2.46min versus 1.70 min, p=0.754).
Discussion: Although the information processing algorithm had room for improvement, the task-specific EMR
interface significantly reduced errors in assessing IVT eligibility criteria.
Conclusion: The study findings provide evidence to support an NLP enhanced EMR system to facilitate IVT
decision-making by presenting meaningful and timely information to clinicians, thereby offering a new avenue
for improvements in acute stroke care.

1. Introduction

Stroke is one of the leading causes of death and disability, and
places a huge economic burden on healthcare systems worldwide [1].
Of all strokes, about 75% to 90% are ischemic strokes [2]. Currently,
intravenous thrombolysis (IVT) is a standard treatment for acute is-
chemic stroke (AIS) [3], significantly reducing the chance of disability
following stroke if patients are treated within 4.5 h of stroke onset
[4,5]. Because the effect of IVT on functional outcomes is time-depen-
dent, with better outcomes being associated with earlier treatment

[6,7], patients with AIS should be evaluated and treated as soon as
possible upon arrival at the emergency department (ED). Various
strategies, such as hospital pre-notification, prompt stroke team noti-
fication, rapid evaluation, and pre-acquisition of history, have been
used to expedite the administration of IVT [8,9].

However, IVT is not without side effects, of which symptomatic
intracranial hemorrhage (SICH) is the most serious and life-threatening.
SICH potentially increases the risk of poor and fatal outcomes [10], and
might consequently reduce the net benefit from IVT. Worst of all, such
hemorrhagic complications may lead to litigation and malpractice
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claims [11]. Many factors, including older age, greater stroke severity,
and hyperglycemia, increase the risk of SICH [12]. Therefore, stroke
guidelines generally specify eligibility criteria for patients who can be
treated with IVT [3,13], and violations of the treatment protocol were
found to increase the risk of SICH [14]. Although most of the eligibility
criteria for IVT simply involve medical history, it is challenging for
physicians to accurately analyze a patient’s medical history within a
very short time [8]. Additionally, patient self-report history is known to
be subject to errors [15], especially for the elderly [16], not to mention
those with aphasia or consciousness disturbance.

With the design of the Taiwan Electronic Medical Record Template
[17], electronic medical records (EMRs) have replaced traditional paper
records in many hospitals in Taiwan. EMRs typically contain clinical
notes, laboratory results, radiology and pathology records, and pre-
scriptions. Because the EMR interface is where interactions between
clinicians and the EMR system occur, an ideal design of the EMR in-
terface should reduce errors and support clinicians [18]. Although
previous studies have indicated that EMR use improved quality of de-
cisions made in the ED [19], it is time-consuming to distill relevant
information from a large collection of clinical notes and other docu-
ments within the time constraints of IVT. Furthermore, in the already
overcrowded EDs in Taiwan [20], physicians may suffer from cognitive
overload because their work involves constant multitasking and fre-
quent interruptions, resulting in the possibility of medical errors [21].

Recently, natural language processing (NLP) techniques have shown
considerable promise in extracting meaningful information from EMRs
to support clinical decision-making and to facilitate secondary use of
EMRs for research [22–25]. NLP is a field of computer science and ar-
tificial intelligence, and involves the analyzing, understanding and
generation of the languages that humans use naturally. NLP techniques
enable various kinds of text processing tasks including named entity
recognition, information extraction, text classification, and information
retrieval [26]. The most commonly used general-purpose NLP tools for
extracting information from clinical text are cTAKES, MetaMap, and
MedLee [25]. However, such techniques have only recently received
attention in the management of stroke. Very scarce evidence has been
accumulated in the literature regarding NLP and stroke. For example,
Mowery et al. tested an NLP tool called pyContext for its ability to
distinguish clinical reports with significant carotid stenosis from those
without [27]. Although not specifically designed for strokes, Giang
et al. compared their text extraction algorithm with expert judgment of
the Barthel index to measure quality of life [28]. Because of the dire
need for a timely assessment of medical history to evaluate patient
eligibility for IVT, we believe that acute stroke care can be improved
through the use of EMRs with NLP techniques.

Therefore, this study proposed a new information processing algo-
rithm to automatically extract key medical concepts from clinical notes
that are relevant to the IVT eligibility criteria, and developed an en-
hanced task-specific EMR interface to streamline the presentation of the
above analysis for a timely treatment of AIS. Additionally, experiments
were conducted to (a) evaluate the accuracy of the proposed algorithm
to identify relevant medical concepts from clinical notes, and (b) assess
the improvement in completion time and accuracy of the task-specific
EMR interface in helping clinicians evaluate clinical notes. Our aim was
to build on the existing literature of NLP in healthcare to explore the
feasibility of NLP in clinical decisions for timely stroke thrombolysis. To
the best of our knowledge, this study was the first to apply NLP tech-
niques to this clinical problem.

2. Materials and methods

Our approach consisted of three main phases: (1) medical concept
extraction from IVT eligibility criteria, (2) medical concept identifica-
tion from EMRs, and (3) development of a task-specific EMR interface
to support clinical decision-making. Below, we first detail the data
collection procedure and then give in-depth descriptions of each text

processing task in our approach.

2.1. Dataset

This study was conducted in Ditmanson Medical Foundation Chiayi
Christian Hospital, a 1000-bed hospital with an ED volume of ap-
proximately 100,000 patient visits per year. About 400 patients with
AIS are admitted via ED each year. Upon arrival of a patient presenting
with stroke-like symptoms within 3 h of onset, a rapid thrombolysis
protocol (code stroke) will be activated [29], and a nurse practitioner,
an ED physician, and an on-call stroke physician on the acute stroke
team will collaboratively manage the patient [30].

Cases for patient review were selected from the stroke registry of the
study hospital. Adult patients with AIS who presented to the ED within
3 h of onset but were not treated with IVT between October 2007 and
December 2015 were enrolled. Patients who were not treated because
of age over 80 years but otherwise eligible for IVT were also included.
We focused on complex patients with multiple underlying diseases and
frequent interactions with the healthcare system; only patients with
more than five visits to the study hospital in the previous two years
along with at least one inpatient visit were included. An evaluation
corpus was assembled by sampling one discharge summary note and
two outpatient notes for each patient from the clinical notes recorded
prior to the ED visit for AIS. The study protocol was approved by the
Ditmanson Medical Foundation Chia-Yi Christian Hospital Institutional
Review Board (CYCH-IRB No.104105). Patient identifiers were replaced
by sequential numeric identifiers to ensure confidentiality. An informed
consent was thus exempted.

2.2. Natural language processing

This study used MetaMap, an NLP tool developed by the National
Library of Medicine, to extract biomedical concepts from free-form text
[31]. MetaMap breaks down inputted text into words or phrases
through a lexical/syntactic analysis, including tokenization, sentence
boundary determination, part-of-speech tagging, and parsing, and
generates variants of the phrase words [32]. MetaMap then identifies
all the possible candidate terms in the Unified Medical Language
System (UMLS) and evaluates how each candidate matches the phrase
retrieved in the previous process based on measures of centrality, var-
iation, coverage, and cohesiveness. For each matched phrase, MetaMap
categorizes it into a semantic type and then returns a concept unique
identifier (CUI) with a score between 0 and 1000 based on the strength
of the mapping [32].

2.3. Phase I: extraction of CUIs from IVT eligibility criteria

Although IVT eligibility criteria varied across guidelines [3,13],
they generally consisted of medical conditions for which IVT is con-
traindicated. Some of the medical conditions are contraindications to
IVT only if they occur within a time frame before stroke (Supplemental
Table 1). The most recent guidelines by the Taiwan Stroke Society [13]
do not categorize these contraindications as absolute or relative. The
first phase in the development of the algorithm was to determine which
target concepts were to be mined for each medical condition. For ex-
ample, the medical condition of “use of oral anticoagulants” was de-
termined by domain experts to consist of the target concept of “oral
anticoagulant” plus specific drug classes of oral anticoagulants (Sup-
plemental Table 1). A “start list” of CUIs was generated using MetaMap
to map each target concept (Table 1) to the UMLS Metathesaurus,
version 2016AB. To include all CUIs related to the target concepts in the
list, we further adopted a method proposed by Davis et al. [33] to
perform multiple queries from tables MRCONSO and MRREL within the
UMLS schema. We then eliminated duplicates and manually removed
CUIs that were considered unrelated to the original medical condition.
Finally, a total of 361 distinct CUIs were produced in the “target list” of
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CUIs (see the top half of Fig. 1).

2.4. Phase II: identification of CUIs from EMRs

In the second phase, a series of text preprocessing modules were
applied to the patient clinical notes retrieved from the EMR database
before performing CUI identification (see the bottom half of Fig. 1).
Because spelling errors are common in clinical notes, the text from the

evaluation corpus was first preprocessed to correct misspelled words
using Google’s spell checker API. Specifically, a ranked list of re-
commended words was generated by Google’s spell checker and the
misspelled word was unconditionally replaced by the first word of the
list. Next, acronyms and abbreviations were expanded by looking up a
list of common clinical acronyms and abbreviations used locally (Sup-
plemental Table 2). Non-ASCII characters were removed to avoid pro-
blems during MetaMap processing. MetaMap configured with the word
sense disambiguation option was then used to detect mentions of the
target concepts in the target list (Supplemental Table 1) by mapping the
text from the evaluation corpus to the UMLS CUIs. The NegEx algorithm
was used to detect negated concepts [32].

2.5. Phase III: a task-specific EMR interface for assessing IVT eligibility
criteria

To present the results of matched IVT-relevant information to clin-
icians, a new user interface was developed in the third phase (Fig. 2).
The interface provides a list of contraindications to IVT in the left panel.
The upper right panel lists clinical notes sorted by date in descending
order. A contraindication is highlighted in red color and marked with
an asterisk if any mention of the related medical concepts is detected in
clinical notes within the time frame for this contraindication. The
corresponding clinical notes are also marked with an asterisk. The
contents of the selected clinical note are shown in the lower right panel,
in which the phrases containing the identified concepts in positive form
are highlighted in red, whereas those in negated form are highlighted in
green.

2.6. Experimental evaluation and statistical analysis

Two experiments were conducted. The first experiment examined
the performance of automatic identification of the target concepts by
the proposed algorithm. Manual annotations were used as the reference
standard. Two stroke neurologists (SFS and LCH) independently anno-
tated the unprocessed evaluation corpus and determined whether the
target concepts were mentioned. All discrepancies were resolved by
consensus. In performance evaluation, we considered two levels of
granularity, i.e., phrase level and document level. For example, if a

Table 1
Performance of automatic identification of contraindications to intravenous thrombolysis
in experiment I.

Target concepts Phrase level Document level

N P R F1 N P R F1

Oral anticoagulant 73 1.000 1.000 1.000 31 1.000 1.000 1.000
Heparin 18 1.000 0.833 0.909 5 1.000 1.000 1.000
Arterial puncture 0 NA NA NA 0 NA NA NA
Major surgery 8 1.000 0.125 0.222 6 1.000 0.167 0.286
Serious trauma 0 NA NA NA 0 NA NA NA
Gastrointestinal

hemorrhage
34 1.000 0.618 0.764 18 1.000 0.667 0.800

Urinary tract
hemorrhage

22 1.000 0.955 0.977 16 1.000 0.938 0.968

Head trauma 17 1.000 1.000 1.000 14 1.000 1.000 1.000
Stroke 300 0.996 0.756 0.859 118 1.000 0.915 0.956
Intracranial surgery 1 NA 0 NA 1 NA 0 NA
Intraspinal surgery 0 NA NA NA 0 NA NA NA
Acute myocardial

infarction
4 1.000 0.250 0.400 3 1.000 0.333 0.500

Intracranial
hemorrhage

43 1.000 0.767 0.868 26 1.000 0.769 0.870

Intracranial
neoplasm

5 1.000 0.400 0.571 5 1.000 0.400 0.571

Arteriovenous
malformation

0 NA NA NA 0 NA NA NA

Aneurysm 4 1.000 1.000 1.000 4 1.000 1.000 1.000
Diabetes mellitus 144 1.000 1.000 1.000 110 1.000 1.000 1.000
Overall (micro-

averaged)
596 0.998 0.812 0.895 234 1.000 0.972 0.986

Overall (macro-
averaged)

596 1.000 0.725 0.798 234 1.000 0.766 0.829

F1, F1 measure; P, precision; R, recall.

Fig. 1. The workflow of the information processing algorithm.
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clinical note reads “He had an ACUTE ISCHEMIC STROKE two years
ago. The CT showed a LACUNAR INFARCTION in the left internal
capsule. He was left with right hemiparesis after the STROKE”. The
document-level annotation would be positive for the target concept of
stroke, whereas the phrase-level annotation would list three phrases
related to this target concept.

Precision (positive predictive value), recall (sensitivity), and F1
measure were used to evaluate the performance of automatic identifi-
cation of each target concept against the reference standard at the
phrase and document levels. We did not differentiate positive from
negated concepts. For example, if a clinical note reads “no evidence of
INTRACRANIAL HEMORRHAGE”, this is still a positive mention of in-
tracranial hemorrhage.

The second experiment recruited twelve clinicians from the staff on
the acute stroke team of the study hospital to compare user perfor-
mance between the task-specific and the current EMR interfaces.
Participation was voluntary and compensated. Age, gender, years on
acute stroke team, and years of experience with the current EMR were
collected for each participant. The current EMR interface (Fig. 3) uses a
tabbed view to provide access to clinical notes. List boxes in the top
third of the view contain lists of clinical notes sorted by date, and the
contents of clinical notes are displayed in the bottom two thirds of the
view. Users can scroll through the lists and select what to read. Al-
though the section headers in clinical notes are written in Chinese, the
clinical notes themselves are written in English at the study hospital.

Four mock patient records were derived from the real patient re-
cords used in the first experiment. We ensured that each patient record
had a similar number of clinical notes and amount of text
(Supplemental Table 3). In addition, each patient had a different
combination of contraindications to IVT to increase representativeness.
Similarly, two stroke neurologists determined the contraindications for
IVT in the mock patients, with differences adjudicated to reach a con-
sensus reference answer.

The second experiment employed a 2-period crossover design
(Fig. 4). Each user reviewed the four patient records, two with the
current EMR interface, and two with the task-specific EMR interface,
resulting in a total of 48 testing scenarios. Immediately before using the
task-specific EMR interface, users had at most 30min to practice with

the new interface. The total number of users was set at 12 so that each
mock patient appeared six times in testing scenarios with the current
EMR interface and in those with the task-specific EMR interface (Fig. 4).
Users had to check a list of 11 contraindications for IVT (Supplemental
Table 1) for each mock patient. Their answers were labeled as correct or
incorrect against the reference answer. Each correct answer was given
one point. The total points for each testing scenario were divided by 11
to get an accuracy score (maximum=1). Given the importance of ef-
ficiency in clinical practice of IVT, the time to completion for each
testing scenario was recorded. After the experiment, users were asked
to complete the System Usability Scale (SUS) [34] to evaluate the us-
ability of the task-specific EMR interface.

Given the small sample size in the user experiment, non-parametric
statistical analyses were performed. Because each user was exposed to
each testing EMR interface twice, the accuracy scores and time to
completion were collapsed by averaging for each EMR interface. Then
the Wilcoxon signed-rank test was performed for comparison between
two EMR interfaces because users were measured repeatedly [35]. As
collapse of features results in loss of information and decreases the
testing power, sensitivity analyses were performed without collapsing
the data [35].

Two-tailed P values< 0.05 were considered statistically significant.
Statistical analyses were performed using Stata 15 (StataCorp, College
Station, Texas).

3. Results

3.1. Experiment I: performance of automatic identification of IVT eligibility
criteria

A corpus of 234 notes from 78 patients were retrieved from the EMR
database. A total of 596 phrases were manually determined to be re-
lated to the target concepts in Table 1. The most common target con-
cepts identified included stroke, diabetes mellitus, and oral antic-
oagulant. Table 1 reports the performance of the proposed algorithm.
Among the 17 target concepts, the precision was always above 0.99,
whereas the recall varied from 0.125 to 1. The F1 measures ranged
between 0.222 and 1 at the phrase level and between 0.286 and 1 at the

Fig. 2. The new task-specific EMR interface. Clinical notes with mentions of medical concepts related to contraindications to intravenous thrombolysis are marked with an asterisk.
Concepts in positive form are highlighted in red whereas those in negated form are highlighted in green. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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document level. Lower F1 measures were achieved in identifying the
concepts regarding major surgery, acute myocardial infarction, and
intracranial neoplasm. Overall, the micro-averaged precisions, recalls,
and F1 measures were 0.998, 0.812, and 0.895 at the phrase level and
1, 0.972, and 0.986 at the document level, respectively. The macro-
averaged precisions, recalls, and F1 measures were 1, 0.725 and 0.798
at the phrase level and 1, 0.766, and 0.829 at the document level, re-
spectively. These performance metrics indicate that the algorithm has a
high level of overall classification accuracy.

3.2. Analysis of mapping errors

Of the 596 phrases, only one was identified as a false positive result.
Its text included “Taiwan Stroke Society Guidelines”, which was an-
notated by MetaMap with the concept of stroke (C0038454: STROKE).
A total of 114 false negatives were recorded. The false negatives could

be generalized into three types. In the first type (n= 100), concepts
relevant to a target concept was identified by MetaMap but their CUIs
were not included in the target list for that concept. For example, “right
middle cerebral artery territory infarction” was mapped to “C0751849:
Right Middle Cerebral Artery Infarction”, which was not listed in the
target list for the concept of stroke. The second type (n= 9) was due to
missed term failures, in which a relevant term was simply not identified
by MetaMap [36,37]. For example, “heparinization” indicates ther-
apeutic administration of heparin. However, it was not identified by
MetaMap. The third type (n=5) was attributed to boundary failures, in
which a single coherent term was incorrectly parsed into multiple terms
[37]. For example, “gastric ulcers and bleeding” was manually anno-
tated with the concept of gastrointestinal hemorrhage. Instead, it was
recognized by MetaMap as two UMLS concepts, i.e., “C0038358: Ulcers,
Gastric (Gastric ulcer)” and “C0019080: BLEEDING (Hemorrhage)”.

Fig. 3. The current EMR interface used in the study hospital.

Fig. 4. Diagram of the user experiment design.

S.-F. Sung et al. International Journal of Medical Informatics 112 (2018) 149–157

153



3.3. Experiment II: user experiment to assess the task-specific EMR interface

The goal of the user experiment was to examine the capabilities of
the improved user interface powered by NLP techniques to improve
time and accuracy of the clinical decision on eligibility for IVT. The
twelve users comprised two neurologists, eight nurse practitioners, and
two ED physicians. The four mock patients had one, three, three, and
six contraindications to IVT, respectively. Each mock patient record
contained 38 clinical notes and on average each note contained 420
word tokens (Supplemental Table 3). The time to completion for all 48
testing scenarios ranged from 0.58 to 5.97min, with a median of
1.92min. The accuracy scores ranged from 36% to 100%, with a
median of 91%. None of the 24 testing scenarios using the current EMR
interface got all correct answers on the 11 contraindications, whereas 8
(33%) of those using the task-specific EMR interface were completely
correct.

Table 2 shows the characteristics of the users, the SUS score, the
average time to completion, and the average accuracy score. No sta-
tistically significant difference (p=0.754) was observed in the time to
complete the checklist for IVT between the two interfaces (Table 3).
However, participants using the task-specific EMR interface had a sig-
nificantly higher average accuracy score (p=0.016) than those using
the current EMR interface (Table 3). These findings did not change in
the sensitivity analyses (p=0.353 for time and p=0.003 for average
accuracy score). The median SUS score was 66 points, with an inter-
quartile range of 60–75 points, which means the usability of the task-
specific interface was between “OK” and “good” [38].

4. Discussion

4.1. Main findings

We found that automatic identification of contraindications to IVT

by using MetaMap and the UMLS Metathesaurus is a plausible new
direction. For a timely stroke thrombolysis, it is crucial that the acute
stroke team can extract key information regarding IVT eligibility from
the EMRs within a short time. The results from the user experiment
showed that using the current EMR interface, the staff on our acute
stroke team could still extract this information quickly, probably be-
cause of familiarity in the navigation of the existing system. However,
user errors in extracting IVT-relevant data from the EMRs were
common. The new task-specific EMR interface helped reduce errors in
assessing contraindications to IVT without sacrificing the precious time
to offer care.

4.2. Remedies for mapping errors

In this study, MetaMap’s precision was high whereas its recall was
suboptimal. Because the information processing algorithm was in-
tended to identify IVT-relevant information and clinicians still have to
review all the facts and make the final treatment decision, the algorithm
should be viewed as a screening test. Therefore, it is preferable to have
false positives rather than false negatives. A low recall suggests that the
algorithm produced more false negatives and needed to be improved.
As demonstrated by the failure analysis, the main reason was that al-
though MetaMap effectively identified concepts relevant to a target
concept, some of their CUIs were not included in the target list for that
concept. This problem could be rectified by manually expanding the
start list of target concepts based on expert knowledge. A possible
strategy could be to implement an interactive mode [28,39] in the EMR
interface to allow clinicians to add phrases relevant to each target
concept, which in turn triggers the information processing algorithm to
rebuild the start list and the target list. The system performance could
thus be improved without intervention of the software developers.

Nevertheless, it may be difficult to improve the low recall for some
of the target concepts such as major surgery. This is because clinicians
generally document actual surgical procedures such as “cholecys-
tectomy” rather than the literal phrase of “major surgery” in patient
notes. Moreover, the definition of major surgery may vary across phy-
sicians, even though the guidelines explicitly state that major surgery
within previous 14 days is a contraindication to IVT. Therefore, a list of
concepts related to major surgery will be needed a priori. However, it
will be unfeasible to generate an exhaustive list of surgical procedures
which are considered major surgery. Future work may explore how
structured data, such as the International Classification of Diseases
Procedure Codes, can be used in this aspect.

Table 2
Characteristics and performance of users in experiment II. Each user reviewed two patient records with the current EMR interface and two with the task-specific EMR interface. The time
to completion and accuracy scores were averaged for each EMR interface.

Users Age, year Gender On acute stroke
team, year

Experience with current
EMR, year

SUS score Current EMR interface Task-specific EMR interface

Average time,
min

Average accuracy
score

Average time,
min

Average accuracy
score

#1 37 F 10 7 57.5 1.76 82% 5.12 95%
#2 32 F 10 8 52.5 1.65 82% 2.68 86%
#3 31 F 5 3 72.5 2.20 91% 1.82 91%
#4 47 M 10 11 30.0 1.62 77% 4.87 82%
#5 40 F 8 6 62.5 2.41 73% 0.96 95%
#6 40 M 10 7 77.5 1.05 73% 0.86 95%
#7 31 M 3 3 75.0 1.48 73% 0.77 95%
#8 37 M 6 6 82.5 3.80 86% 2.50 91%
#9 28 F 1 1 65.0 0.93 68% 3.10 86%
#10 45 F 10 7 75.0 3.09 91% 2.42 91%
#11 35 F 2 2 62.5 2.24 68% 2.52 100%
#12 39 F 10 6 67.5 0.92 82% 0.87 64%

EMR, electronic medical record; SUS, System Usability Scale.

Table 3
Comparison of test results between the two EMR interfaces in experiment II. The time to
completion and accuracy scores for the 12 participants were compared using the
Wilcoxon signed-rank test.

Current EMR
interface

Task-specific EMR
interface

P

Time, min, median
(IQR)

1.70 (1.27–2.33) 2.46 (0.91–2.89) 0.754

Accuracy score, median
(IQR)

80% (73%–84%) 91% (86%–95%) 0.016

EMR, electronic medical record; IQR, interquartile range.
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4.3. EMR usability

EMR systems have been widely adopted in Taiwan and a national
EMR exchange system has been established to provide inter-institution
EMR exchange for improving continuity in healthcare [40]. Patient
information is now more readily accessible and transferable. However,
with the rapid growth of large amounts of unstructured clinical docu-
ments, the so-called “patient information explosion”, EMR users are
faced with various challenges, including information filtering, context-
sensitive decision support, and data reliability [41]. A usable EMR in-
terface should support clinical decisions by reducing user cognitive
workload and improving work processes so that clinicians are able to
complete tasks effectively and efficiently with high satisfaction. Us-
ability problems may not only reduce efficiency but also compromise
patient safety [42]. A survey on the usability requirements of EMR
systems found that “ease of finding the required information on the
screen” was the utmost requirement [43]. As seen in this study, errors
in assessing contraindications to IVT were almost inevitable with the
current EMR interface. By highlighting IVT-relevant information, the
task-specific EMR interface significantly reduced errors in assessing
contraindications and might thus ensure patient safety.

In addition to enhancing patient safety, prompt and accurate eva-
luation of IVT eligibility could potentially ease the workload of stroke
physicians. To facilitate timely stroke thrombolysis, code stroke pro-
tocols are widely implemented in hospitals providing acute stroke care
[29,44,45]. Code stroke protocols generally adopt various strategies to
expedite the decision-making process of IVT, including pre-acquisition
of medical history from EMRs and pre-notification of stroke physicians.
However, many code stroke activations are futile because a significant
proportion of stroke patients are not eligible for IVT even though they
present to the ED in time [29,46]. Excessive code stroke activations
have led to overload of on-call stroke physicians [29]. If the eligibility
for IVT could have been assessed accurately with the task-specific in-
terface by ED personnel before the activation of the code stroke pro-
tocol, such futile activations might have been avoided.

4.4. Clinical decision support for stroke

Despite the significant benefits of using clinical decision support on
healthcare [47], the existing electronic tools to support decision-
making in IVT are rudimentary and suboptimal [48]. There are very
few existing tools focusing on risk communication with patients and
outcome prediction of IVT using validated equations [49–51]. For as-
sessment of IVT eligibility, Sun et al. developed a decision support
system that searched EMRs for contraindications to IVT based on
structured data including International Classification of Diseases codes
and medication codes, and presented IVT-relevant information on
hand-held devices [52]. Nevertheless, previous studies have found that
NLP techniques have advantages over methods using disease codes in
identifying clinical cases at only slightly greater costs of time and effort
[53,54]. It was advised that information extracted from NLP-processed
text should be used in combination with structured data.

4.5. Limitations

Certain limitations were present in this study. First, only 234 clin-
ical notes from 78 patients were used to test the performance of auto-
matic identification of IVT eligibility criteria. The small sample size
may raise concerns regarding the interpretability of the results and the
generalizability of findings. In addition, it has made some of the target
concepts too rare to be tested effectively (Table 1). Although this may
reflect the low incidence of these medical conditions in patients with
stroke, obtaining information about these medical conditions is still
crucial before a treatment decision can be made. Further work should
collect and test clinical notes from patients with these medical condi-
tions before deploying the new EMR interface. Second, the user

experiment was not conducted in real-world practice settings. We had
to use mock patient records to standardize the experiment among dif-
ferent testing scenarios in the user experiment. Further experiments in
the real-world practice are needed to investigate the usefulness of the
task-specific EMR interface. Third, we did not measure the time spent
on processing patient clinical notes. A main weakness of MetaMap is the
long processing time, resulting in its insufficiency for real-time anno-
tation of large amounts of clinical notes [32]. An information tech-
nology infrastructure capable of processing large volume of notes
should be ensured before the implementation of the task-specific EMR
interface for production use [35]. Fourth, the user experiment com-
pared an already familiar interface and an entirely new one. The par-
ticipants were unlikely to master the new interface within limited time.
Although no significant difference was found in the completion time
between the two EMR interfaces, the completion time is more likely to
be further reduced after the participants gain more experience with the
new interface. Finally, we did not use structured data because the
purpose of this study was to explore the feasibility of using NLP tech-
niques on the assessment of IVT eligibility criteria.

5. Conclusion

With the widespread use of EMRs, the amount of unstructured free-
text clinical documents is increasing. Although clinical notes contain
rich patient information, they are less amenable to manipulation and
utilization by clinical decision support tools compared to structured
data. Our work contributes to the literature and healthcare practice in
several ways. First, our feasibility study demonstrated that a task-spe-
cific EMR interface using NLP techniques may help extract and present
meaningful information in a timely manner to facilitate the decision-
making process of IVT in patients with AIS. Second, UMLS, despite
being an authoritative source of health and biomedical vocabularies, is
still limited in clinical use. Our approach adopted UMLS to produce a
list of CUIs to be used as targets for mapping; however, the final target
list still needs revision by clinicians to include additional relevant CUIs.
But, once this target list is generated and reviewed, it does not need to
be changed frequently. Therefore, it offers a good level of stability for
the proposed automatic NLP algorithm to produce consistent results. In
the end, the whole task-specific user interface together with the NLP
enhanced system could improve the overall accuracy of patient selec-
tion for IVT. Third, our work provides some successful evidence for
bridging three disciplines (healthcare, NLP, and technology) to provide
a practical solution to a problem that has a pressing need for an ac-
ceptable solution.

Future work should include combining information from structured
data and using feedback from domain experts to iteratively refine the
relevancy of presented information, which will hopefully enable clin-
icians to improve acute stroke care.
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Summary Points

What was already known on the topic:

• Intravenous thrombolysis (IVT) is a standard treatment for
acute ischemic stroke (AIS), but the use of IVT is limited to
patients fulfilling the eligibility criteria.

• The effect of IVT on functional outcomes is time-dependent;
patients with AIS should be treated within 4.5 h of stroke
onset.

• The existing electronic tools to support decision making in IVT
are rudimentary and suboptimal. There are very few existing
tools focusing on risk communication with patients and
outcome prediction of IVT. Only one tool was developed to
search electronic medical records (EMRs) for contra-
indications to IVT based on structured data.

• Natural language processing (NLP) techniques have received
little attention in the management of stroke.

What knowledge this study adds:

• It is feasible to automatically identify key information re-
garding IVT eligibility from the EMRs using an off-the-shelf
NLP tool, MetaMap, and the UMLS Metathesaurus.

• The user experiment showed that with the conventional EMR
interface, clinicians could quickly extract IVT-relevant in-
formation from the EMRs, albeit with many errors.

• By highlighting IVT-relevant information, the task-specific
EMR interface significantly reduced errors in assessing
contraindications to IVT and might thus ensure patient
safety and ease the workload of stroke physicians.

• NLP techniques can help extract key information regarding
IVT eligibility from the EMRs within a short time and thus
improve the quality of clinical decision making.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ijmedinf.2018.02.005.
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